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Introduction

The Fast Phase Detector measures the phase difference between a beam current
monitor signal and a VCO signal reference for the RF cavities. The phase signal out
of the phase detector is used as feedback in a phase locked loop with the VCO. For
reasons we will not go into here, a 40 ns to 100 ns portion of the beam is notched out
or removed from each booster batch. It is desired to hold the phase signal out of the
phase detector fixed during the interval in which the phase signal would show a
response the presence of the notch.

Though the current Fast Phase Detector performs sufficiently well, the circuit is more
than fifteen years old and most of the essential components are currently unavailable.
Thereforeit is being proposed that a new Fast Phase detector be designed using
available components and incorporating the needed fast sample and hold function.

Since the current Fast Phase Detector is part of atuned control loop essential to the
operation of the Booster, we must characterize it in order to specify the next version.
The new phase detector will need to match the current orein regard to scaling,
dynamic response, and input bandwidth and dynamic range.

This note documents the results of the characterization tests performed on the current
Fast Phase Detector as well as the results of these tests performed on a preliminary
prototype of a circuit that could replace the current one.

Description of the Current Fast Phase Detector

C. Kerns designed the current Fast Phase Detector in 1987 (DWGH# 0331.00-ED-
180843). The schematic in Figure I1.1 shows high speed comparators on each input
to detect the zero crossings of each signal followed an ECL XOR logic gate. The
diode bridge following the XOR gate acts to switch current into or out of the
integrating amplifier in proportion to the phase difference between inputs A In and B
In.

The—10V to +10 V output represents a phase difference between A Inand B In of O
to 180 degrees. The phase in Degrees is computed from the Phase Out in Valts,
according to

Phase (deg) = PhaseOut (Volts)* (- 180/ 20) + 90

The current Fast Phase Detector does incorporate sample and hold circuitry intended
for use when measuring the phase with a partia turn of beam in the Booster.
However, this portion of the circuit has not been used for many years. This sample
and hold introduces switching charge errors that are significant in the current Booster
Low Level RF control and needs to be improved.

Specification for the Operation of the Fast Phase Detector.

The existing Fast Phase Detector works within the specifications given below. A new
Fast Phase Detector would need to meet these specifications as well.



1. Input signal frequencies are from 37 MHz to 53 MHz.

2. Input signal strength of the detected beam signal ranges from 30 mV to 300 mV
RMS (+2.5 dBm to —17 dBm for a 50 inpuit).

3. Bandwidth (-3dB) of the detected phase is approximately 1 MHz.

4. Output signal is +/- 10 V, with the phase relationship
Phase(deg) = PhaseOut (Volts)* (- 180/20) +90.

5. Detected phase accuracy within +/- 0.5 degrees between 60 to 120 degrees and
within +/- 1 degree between 30 to 150 degrees.

The next Fast Phase Detector is expected to implement the sample and hold function
using A/D to D/A digitization techniques. Hence additional specifications include

6. A/D and D/A output signals should be good to 12 bits.

7. Signa propagation from input to output should be kept below 100 ns and
preferably less than 30 ns.

8. The sample and hold function should be able to hold the output for 0 to 300 ns
with minimal transient disturbance of the output signal when switching (less than
5.0 mV peak).

9. Three or Four buffered copies of the of the analog phase voltage derived before
digitization should be made available as well as four copies of the phase voltage
after the sample and hold.
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Figurell.1l Schematic of the current Fast Phase Detector, Kerns 1987.



IV. Test Performed on the Fast Phase Detectors.

A number of tests were performed on the current version of the Fast Phase Detector
as well as the prototype of its proposed replacement. The following sections describe
the tests and present the results.

V.1 Test 1: The Beat Frequency Test of the Phase Modulation Bandwidth

Two signal generators are used to provide Input A and Input B of the Phase Detector
with signals with an offset in frequencies. Since we expect to express the phase
difference between two signals of the same frequency we consider the following.

Input A= Cos(2pF;t)

Input B = Cos(2pF,t) = Cos(2pF,t +2p (F, - F)t)

OR

Input B = Cos(2pFt +f (1)), where f (t) = 2p(F, - F)t

It is plain that the phase between these two inputs is a ramping type function with a
dope equd to 2p(F, - F,) Radians/ Second. The phase detectors are design to have
an output voltage according to

PhaseOut (Volts) = |Phase(Deg)| - 90(Deg)
(- 180(Deg)/ 20(Volts))

Hence the output of the Phase Detector is a periodic triangle-wave with a period

T :%Fz B Fl)

A scope picture of the Phase Detector output is shown in Figure IV.1.1. The
equipment setup for Test 1isillustrated in Figure 1V.1.2. Test 1 measures the output
amplitude of the triangle-wave for fundamental input frequencies of {30 MHz, 36
MHz, 42 MHz, 48 MHz, 54 MHz}with frequency offset in Input B in severa steps
between 10 KHz and 2 MHz for each fundamental frequency.

The results for the Kerns Phase Detector are shown in Figure 1V.1.3, and those for the
proposed replacement in Figure 1V.1.4.
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FigurelV.1.1 Example of the Phase Detector outputsseenin Test 1.
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FigurelV.1.3 Resultsof Test 1 on the Kerns Phase Detector

Phase Detector Phase Modulation Bandwidth on the Proposed Replacement Phase
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V.2 Test 2: The Input Amplitude Dynamic Range.

Test 2 provides a measure of the input signal amplitudes for which the phase
detectors will give an accurate response. The setup for Test 2 isillustrated in Figure
IV.2.1. Here the phase relationship between Input A and Input B is fixed for a given
frequency according to the difference in length between the cables connecting the
signal splitter outputs to the phase detector inputs. The amplitude of both signals are
varied using the amplitude adjustment of the signal generator.

The results for the Kerns Phase Detector are shown in Figure 1V.2.2, and those for the
proposed replacement in Figure [V.2.3.

Signal Gererator #1 |

T
ooon
l.’p |Iv§{—m's Fast Phase Detector ]
|E—'\“-"a~,f 0 deg Spiitter]
T
/7{ |Phase Out, Voits
Z —b
Amp. In, dbm <_|E I‘_x___,i
Iriput B i

FigurelV.2.1 Setup for Test 2: Input Amplitude Dynamic Range.
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V.3 Test 3: The Beam Input Amplitude Dynamic Range.

In Test 2 both the beam pickup signal and the VCO frequency referernce signal were
attenuated. In Test 3 only the beam pickup signal is attenuated. Thisis more like the
situation we are concerned with in the LLRF system since the VCO reference signal
is set to always be the same amplitude. Figure IV.3.1 illustrates the setup for Test 3.
Three BNC attenuators connected in series are chosen for each of the desired
attenuation values used in the test. The nomina value of the attenuation is used,
however the particular phase through each attenuator used in the test was measured
using a network analyzer and then used to correct the value of phase in degrees
measured. This had only a small effect on the final results.

The results for the Kerns Phase Detector are shown in Figure 1V.3.2, and those for the
proposed replacement in Figure 1V.3.3.

Figure 1V.3.4 and Figure 1V.3.5 chart the output deviations of the phase output
signals from nominal output at the largest signal input amplitude, -3 dBm, asthe
beam signal input amplitude is decreased
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V.4 Test 4: The Response Linearity.

In Test 4 the rising slope of the phase detectors triangle-wave output is recorded using

the oscilloscope. The datais transferred to Excel using afloppy disk. A linear
regression is performed on the data for phase outputs between 30 Degrees and 150
Degrees. The residuals from this straight line fit provide the indication of the
linearity of the phase detectors response.
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FigurelV.4.1 Setup for Test 4. Output Linearity.
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Residual Plot Of Linear Fit to Phase Detector Output, dF=600 Hz
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FigurelV.4.2 Linearity resultsfrom Test 4 on the Kerns Phase Detector.
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FigurelV.4.3 Linearity resultsfrom Test 4 on the AD8302 Phase Detector
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IV.5 Test 5: The Notch Recovery.

There will be aflat spot in the normally continuous RF signal produced by the beam
and beam pickups. This occurs when a portion of the circulating beam is notched out
for the sake of reducing losses at the extraction kicker. The output of the phase
detector will need to be held over the period where the beam signal is flat and the
phase output isinvalid. Test 5 examines the response of each phase detector to this

notch in the signal.
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FigurelV.5.1 Setup for Test 5: Phase Detector Notch Recovery
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